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"The fundamental problem of 
communication is that of 
reproducing at one point either 
exactly or approximately a 
message selected at another point"
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AN EXAMPLE OF ERROR-CORRECTION CODING: 
THE (7,4) HAMMING CODE

4 INFORMATION BITS ARE PLACED IN THE 
INTERSECTIONS OF THE VENN DIAGRAM

EACH CIRCLE IS FILLED WITH A "PARITY BIT"
TO FORM A 7-BIT CODEWORD
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SINGLE ERRORS CAN BE 
CORRECTED BY FINDING THE 
CIRCLES WITH AN ODD NUMBER 
OF 1'S AND COMPLEMENTING THE 
BIT IN THEIR INTERSECTION
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Error correction coding reduces the required transmitter power 
for a fixed data rate (or increases the data rate for a fixed 
transmitter power) for a desired reliability (residual bit error rate)

This is possible because the redundancy introduced by coding is more than 
offset by its ability to correct a certain amount of errors

The (7,4) Hamming code can correct only one error in a block of seven symbols!

Much more powerful codes have been used in JPL missions:

(7,1/2) convolutional code
(7,1/2) code + Reed-Solomon code
(15,1/4) code + Reed-Solomon code
(15,1/6) code + Reed-Solomon code

Voyager
Voyager at Neptune
Galileo (Original plan)
Cassini

However, further improvements were beyond reach due to enormous 
increase of decoder  complexity ... 
                                                                        ....until recently!



 Turbo Codes for Deep-Space Communications

A turbo code is a combination of two simple codes. 
For a block of K information bits, each constituent code generates a 
set of parity bits. 
The turbo code consists of the information bits and both sets of 
parity. 
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(Recursive Conv. code)
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Turbo codes represent a quantum leap in channel coding performance for 
deep space applications, providing higher coding gain and much lower 
decoding complexity than current coding systems
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Turbo Codes for Deep-Space Communications
Performance and complexity
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Turbo codes outperform the codes 
currently used in NASA's deep-space 
missions
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They are much simpler to decode 
than the Galileo and Cassini codes

The decoding complexity scales 
as the number of states times the 
number of iterations

To achieve their phenomenal 
performance, turbo codes require 
the use of large interleavers, but 
not much larger than those used 
by current concatenated codes
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Comparison of turbo codes with current coding schemes
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• Rate 1/2 turbo code
• 16,384-bits code block
• QPSK modulation with differential detection
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Turbo codes have been 
demonstrated on a real 
channel in TDL 
(Telecommunications 
Development Lab)

An experiment on a 
space link using ACTS is 
in progress



Performance of New Turbo Codes
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Evolution of channel coding systems used for deep-space 
communications
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The turbo code structure was extended to develop codes that are 
power efficient and bandwidth efficient

•



TURBO CODE IDEA
NEW MILLENNIUM
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Data compression conserves transmission (or storage) bandwidth by removing 
redundancy in the source

Error correction introduces suitable redundancy to control channel errors

Source/channel coding interaction (error propagation; error containment)

•

•
•

    ... Compression is an obscure discipline, a world of tedious lab work, academic
conferences and acronyms such as MPEG and ADSL. But already it is letting
companies bring to market products once dismissed as being years away ...

The Washington Post,  Nov. 28, 1993



Data Compression Methods

Entropy Coding
Variable length coding (e.g., Huffman coding):  Assign shorter codewords 
to more probable symbols

Arithmetic coding:  Improved performance, higher complexity

Transform Based Compression

Transform stage decorrelates data, making compression stage more 
efficient. Examples:  WHT, DCT (JPEG), Subband Coding (wavelets), 
ICT, DPCM

New Millennium Lecture Data Compression

TRANSFORM
(LOSSLESS)

QUANTIZE
(LOSSY)

ENTROPY CODING
(LOSSLESS)

Compressed bitsSource samples



Data compression is good
(... but don't touch my bits!)

Rate (bits/sample)
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A typical rate-distortion curve
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LOSSY COMPRESSION
(q+  bits/sample source data)

q+ > q

LOSSY COMPRESSION
(q  bits/sample source data)

"LOSSLESS" COMPRESSION
(q  bits/sample source data)
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ORIGINAL 
IMAGE

A 4x4 example of the ICT compression algorithm used by Galileo S-band

Developed the data compression algorithm that is used in the 
Galileo S-band mission (After the the high gain antenna anomaly)

This algorithm is based on an low-complexity transform, the integer cosine 
transform (ICT)

Its low complexity is also desirable for small spacecraft

•

•

•
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Progressive image transmission 
using subband coding (Wavelets)

Goal was to produce high quality images 
at intermediate resolutions

Comparison of progressive subband compression 
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Progressive transmission: Raster Scanning
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Progressive transmission:  Subband coding (Wavelets)



FEATURE-DRIVEN PROGRESSIVE TRANSMISSION
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Progressive transmission schemes can be based on feature extraction 
methods --- important data is sent first, at high resolution

The image is divided into blocks. The "importance" of each 
block is determined by a measure of pixel activity or feature 
matching

•
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On board data analysis?
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Beyond conventional data compression

• On-board data screening

• On-board analysis

• Feature extraction
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DATA BASE

TO EARTH

• Low complexity on-board data screening and analysis (Feature extraction?)

• In-flight reprogrammable "data representation" chip (Compression, error correction, etc.)

• Low complexity video compression

• Space communication protocols that make the spacecraft appear as a node of the
  network (Build a solar system WEB; Accomplish a virtual human presence in space)

• Use crosslinks to balance source data loads with sustainable downlink data rates

• Store data from sensors in local data base



New Millennium Lecture

Summary

Source coding can often save 10-13 dB of power when transmitting images, with 
excellent reproduction quality.

Source coding can typically save ~3 dB of power by lossless compression of data

A  in-house developed compression chip could incorporate "windowing" , progressive 
transmission, and an error containment scheme

On-board data analysis could drastically reduce downlink requirements

Turbo codes offer the best performance/complexity tradeoff

We have done extensive simulations, and we have analytic performance bounds

We have demonstrated turbo codes on a physical channel, and we have space 
demonstrations in progress

Turbo codes eliminate the need for Reed-Solomon encoder

The turbo encoder complexity is similar to that of a convolutional code, plus a 
16Kbit interleaver

Turbo codes can save up to 1 dB in required transmitter power compared to the 
best concatenated coding systems in use today

Low cost, reliable deep-space communication systems are 
critical to enabling cost effective, small missions. 

New approaches are required to meet the challenges of next century missions


